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Abstract
Heuristic search algorithms, which are characterized by faster convergence rates and can

obtain better solutions than the traditional mathematical methods, are extensively used in

engineering optimizations. In this paper, a newly developed elitist-mutated particle swarm

optimization (EMPSO) technique and an improved gravitational search algorithm (IGSA)

are successively applied to parameter estimation problems of Muskingum flood routing

models. First, the global optimization performance of the EMPSO and IGSA are validated

by nine standard benchmark functions. Then, to further analyse the applicability of the

EMPSO and IGSA for various forms of Muskingummodels, three typical structures are con-

sidered: the basic two-parameter linear Muskingum model (LMM), a three-parameter non-

linear Muskingummodel (NLMM) and a four-parameter nonlinear Muskingum model which

incorporates the lateral flow (NLMM-L). The problems are formulated as optimization proce-

dures to minimize the sum of the squared deviations (SSQ) or the sum of the absolute devi-

ations (SAD) between the observed and the estimated outflows. Comparative results of the

selected numerical cases (Case 1–3) show that the EMPSO and IGSA not only rapidly con-

verge but also obtain the same best optimal parameter vector in every run. The EMPSO

and IGSA exhibit superior robustness and provide two efficient alternative approaches that

can be confidently employed to estimate the parameters of both linear and nonlinear Mus-

kingummodels in engineering applications.

Introduction
Accurate forecasting of flood wave movement in natural river channels is extremely important
for the real-time monitoring, alert and control of floods, which are effective non-engineering
measures for preventing tremendous loss of lives and property. Two categories of approaches
for flood routing exist: hydraulic and hydrologic methods [1]. The former routes flood by
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numerically solving the famous Saint-Venant equations, which usually has strict requirements
for the topographical data of the investigated stream channel (such as channel cross-section
and roughness) and complicated computations [2]. Conversely, the latter is based on the conti-
nuity and empirical storage equations and is more widely used in engineering applications due
to its simplicity. The Muskingum flood routing model, developed by McCarthy [3], is the most
frequently applied hydrologic technique.

As is known to all, the precise estimation of parameters is the key point in applying the
Muskingum method for real-time flood forecasting [4]. This problem is always formulated and
solved by determining the values of Muskingum parameters using historical inflow-outflow
hydrograph data based on a specified optimization criterion (i.e., optimization objective). Dur-
ing the past decades, two types of diverse techniques have been developed to deal with the
problem: traditional mathematical methods and heuristic optimization algorithms. The mathe-
matical methods include the least-squares method (LSM) [5], the Hooke-Jeeves (HJ) pattern
search in conjunction with the linear regression (HJ+LR), the conjugate gradient (HJ+CG) or
the Davidon-Fletcher-Powell (HJ+DFP) algorithms [6], the nonlinear least-squares regression
(NONLR) [7], the Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) [8] and the Nelder-
Mead simplex (NMS) algorithm [9]. However, most mathematical methods mentioned above
inevitably have some drawbacks, such as special derivation conditions, a time-consuming qual-
ity or initial parameter assumptions. Therefore, numerous researchers focus on heuristic opti-
mization algorithms that are characterized by fast convergence and the ability to obtain better
solutions in recent decades, such as the harmony search (HS) [10], the genetic algorithm (GA)
[11], the standard, improved or hybrid particle swarm optimization algorithms (PSOs) [12–
15], the immune clonal selection algorithm (ICSA) [16], the differential evolution (DE) [17],
and the cuckoo search (CS) algorithm [18].

The purpose of this research is to apply the newly developed elitist-mutated PSO (EMPSO)
algorithm [19] and an improved gravitational search algorithm (IGSA) to solve parameter esti-
mation problems of different forms of Muskingum models (one linear structure and two non-
linear structures). The proposed IGSA is based on the gravitational search algorithm (GSA)
[20]. These two improved algorithms both have no previous applications for such issues. In the
IGSA, a modified velocity updating rule and the elite strategy are introduced to enhance the
global search ability and accelerate the convergence speed of the basic GSA, respectively. The
experimental results of 9 widely-used standard benchmark functions with diverse properties
demonstrate the global optimization abilities of the EMPSO and IGSA. The application cases
verify their validity and advantages in handling parameter estimation problems of both linear
and nonlinear Muskingum models.

The remainder of this paper is organized as follows: In Sect. 2, we provide the structures and
the flood routing procedures of three important linear and nonlinear Muskingum models,
whose structure complexities increase with the number of parameters from two to four. In
Sect. 3, we briefly describe the newly developed EMPSO and the IGSA presented in this study,
and then they are tested on 9 minimization benchmark functions. In Sect. 4, the EMPSO and
the IGSA are successfully applied in numerical cases (three typical flood events). The results
and analysis are also presented in this section. We discuss some conclusions of our research
work in Sect. 5.

MuskingumModels
In previous decades, various forms of Muskingum models have been investigated [5, 18, 21].
Three typical linear or nonlinear Muskingum models and their corresponding flood routing
equations or procedures are briefly described in this section: the original two-parameter linear
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Muskingum model (LMM) [3], a three-parameter nonlinear Muskingum model (NLMM) [5]
and a four-parameter nonlinear Muskingum model that incorporates the lateral flow
(NLMM-L) [18].

LMM
The original LMM, which is based on the basic hypothesis that the storage within a river reach
is a weighted function of inflow and outflow rates, employs the following continuity and stor-
age equations.

dSt
dt

¼ It � Ot ð1Þ

St ¼ K½xIt þ ð1� xÞOt�; ðLMMÞ ð2Þ
where St = channel storage at time t; It and Ot = observed rates of inflow and outflow at time t,
respectively; K = storage-time constant, which has a value that is similar to the flow travel time
through the routing river reach; x = weighting factor, x 2 (0, 0.3] for stream channels and x 2
(0, 0.5] for reservoir storage. The finite difference solution for Eqs (1) and (2) and the flood
routing procedure of LMM is given by Eqs (3)–(5).

Ô0 ¼ O0 ð3Þ

Ôt ¼ C0It þ C1It�1 þ C2Ôt�1; ðt ¼ 1; . . . ;TÞ ð4Þ

C0 þ C1 þ C2 ¼ 1 ð5Þ

where Ôt = estimated outflow at time t; T = total number of time intervals; C0, C1 and C2 =
three coefficients of LMM. Note that the LMM is a two-parameter (C0, C1) Muskingum model
because C2 = 1 − C0 − C1.

NLMM
However, the relationship between the channel storage St and the weighted flow [xIt + (1 − x)Ot]
is not always and essentially linear in many river reaches; thus, the use of LMMmay be
inappropriate. Hence, an additional exponent parameterm was introduced to consider the
effect of nonlinearity. The following form of nonlinear Muskingum model has been suggested
[5].

St ¼ K½xIt þ ð1� xÞOt�m; ðNLMMÞ ð6Þ

As shown in Eq (6), the NLMM is a three-parameter (K, x andm) Muskingum model and
the LMM is a particular form of NLMM withm = 1. The rate of outflow Ot can be calculated
by rearranging Eq (6):

Ot ¼
1

1� x

� �
St
K

� �1=m

� x
1� x

� �
It ð7Þ

NLMM-L
The LMM and NLMM are frequently viewed and discussed in the literature. However, they all
disregard the lateral flow along the investigated reach despite the fact that lateral flow exists
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along many river reaches in actual flood events. Assuming that the lateral flow (Qlat) linearly
varies along a river reach and can be expressed as a ratio (α) of the inflow rate (Qlat = αI),
O'Donnell [21] proposed another linear Muskingum model that consider lateral flow in 1985,
it is expressed as Eqs (8) and (9).

dSt
dt

¼ It þ Qlat;t � Ot ¼ ð1þ aÞIt � Ot ð8Þ

St ¼ K½xð1þ aÞIt þ ð1� xÞOt�; ðLMM� LÞ ð9Þ
Inspired by the above assumptions by O'Donnell [21], in 2014, Karahan and Gurarslan [18]

proposed a new nonlinear Muskingum model that takes the lateral flow into consideration
after the integration of continuity Eq (8) and the NLMM in Eq (6):

St ¼ K½xð1þ aÞIt þ ð1� xÞOt�m; ðNLMM� LÞ ð10Þ

As expressed in Eq (10), the NLMM-L is a four-parameter (K, x,m and α) Muskingum
model. By rearranging Eq (10), the rate of outflow Ot can be calculated using Eq (11).

Ot ¼
1

1� x

� �
St
K

� �1=m

� xð1þ aÞ
1� x

� �
It ð11Þ

Routing Procedures of the NLMM and NLMM-L
In contrast to the LMM, the flood routing procedures of nonlinear Muskingum models
NLMM and NLMM-L are highly complex. The routing procedures for the NLMM and the
NLMM-L can be standardized using the following steps [2, 8, 18]:

Step 1: Assume values of the Muskingum parameters (K, x andm for NLMM; K, x,m and α for
NLMM-L).

Step 2: Calculate the storage amount (St) using Eq (6) for the NLMM and Eq (10) for the
NLMM-L.

Step 3: After combining the continuity Eqs (1) and (8) with the corresponding outflow calcula-
tions in Eqs (7) and (11), the time rate of the storage change can be calculated using Eq (12)
for the NLMM and Eq (13) for the NLMM-L.

DSt
Dt

¼ It � Ot ¼ � 1

1� x

� �
St
K

� �1=m

þ 1

1� x

� �
It ð12Þ

DSt
Dt

¼ ð1þ aÞIt � Ot ¼ � 1

1� x

� �
St
K

� �1=m

þ 1þ a
1� x

� �
It ð13Þ

Step 4: Calculate the next storage using Eq (14), where Δt is assumed to represent the unit
time.

Stþ1 ¼ St þ DSt ð14Þ
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Step 5: Calculate the next estimated outflow ðÔtþ1Þ using Eq (15) for the NLMM and Eq (16)
for the NLMM-L.

Ôtþ1 ¼
1

1� x

� �
Stþ1

K

� �1=m

� x
1� x

� �
It ð15Þ

Ôtþ1 ¼
1

1� x

� �
Stþ1

K

� �1=m

� xð1þ aÞ
1� x

� �
It ð16Þ

Note that Eqs (15) and (16) use the observed inflow at the previous time-point (It) instead
of the observed inflow at the current time (It+1) compared with Eqs (7) and (11) because Eq

(15) occasionally provides better estimated outflow ðÔtþ1Þ as suggested and reported by
[6, 8].

Step 6: Repeat Steps 2–5 for all time steps.

Two Improved Heuristic Algorithms

Elitist-mutated PSO
Standard PSO and Its Developments. The PSO algorithm, originally introduced by Ken-

nedy and Eberhart [22], is a population-based stochastic search technique inspired by the social
behavior of fish schooling or bird flocking. In PSO, each individual within the swarm is called
as a particle and represents a candidate solution to the optimization problem. For a D-dimen-
sional search space, assume that Xi = (xi1, xi2, . . ., xiD) and Vi = (vi1, vi2, . . ., viD) denote the
position vector and the velocity vector of the ith particle, respectively. The best previously vis-
ited position of the ith particle and the current global best position in the swarm are recorded
as pbesti = (pi1, pi2, . . ., piD) and gbest = (pg1, pg2, . . ., pgD), respectively, where g is the index of
the best particle in the swarm. During iterations, the swarm is manipulated according to the
updating rules written as Eqs (17) and(18). Note that such process involves individual intelli-
gence, i.e., the particles learn through their own experience (local search) and the experience of
their peers (global search).

vnþ1
id ¼ vnid þ c1r1ðpnid � xnidÞ þ c2r2ðpngd � xnidÞ ð17Þ

xnþ1
id ¼ xnid þ vnþ1

id ð18Þ

where d = 1, . . ., D represents the index for the decision variables; i = 1, . . ., pop and pop = the
number of particles in the swarm; n = iteration number; r1 and r2 = uniformly generated random
numbers in [0, 1]; c1 and c2 = cognitive and social parameters, respectively, which are referred to
as acceleration constants. In addition, the value of velocity vnid in each iteration should be limited
within the range [−vd,max, vd,max], where vd;max ¼ u� ðxud � xldÞ, 0.05� υ�0.50, xud and x

l
d are the

lower bound and upper bound of the dimension d.
Eqs (17) and (18) yield the standard PSO that may have shortcomings of premature conver-

gence and poor control of its search capability. To overcome these drawbacks, extended studies
and developments were reported [23–26]. Among which, two big variations focus on modify-
ing the model coefficients are as follows.

In 1988, Shi and Eberhart [26] introduced a linearly decreasing inertia weight parameter wn

into Eq (17) to balance the local search and the global search abilities, which are expressed as
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Eqs (19) and (20)

vnþ1
id ¼ wnvnid þ c1r1ðpnid � xnidÞ þ c2r2ðpngd � xnidÞ ð19Þ

wn ¼ wmax � ðwmax � wminÞ �
n
N

ð20Þ

where wmax and wmin = the initial and the final inertia weights, respectively; n = current itera-
tion number; and N = maximum iterations.

In 1999, Clerc [23] introduced the constriction factor χ to control the changes in velocity
and assure better convergence of the PSO, as shown in Eqs (21) and (22).

vnþ1
id ¼ w½vnid þ c1r1ðpnid � xnidÞ þ c2r2ðpngd � xnidÞ� ð21Þ

w ¼ 2

j2� φ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 � 4φ

p j ; where φ ¼ c1 þ c2; φ > 4 ð22Þ

Other developments on improving the performance of PSO fall into two categories [24]: (1)
considering the population structure [25, 27] and (2) altering the interaction modes between
each particle and its neighbors [24, 28–30].

Latest Velocity Updating Rule and Elitist Mutation Operator. A newly developed PSO,
namely, elitist-mutated PSO (EMPSO), was proposed by Nagesh Kumar and Janga Reddy [19]
for solving water resource problems. Two main improvements in the EMPSO algorithm are:
(1) each particle calculates its velocity using the latest updating rule as shown in Eq (23), where
χ is the constriction coefficient and w is the inertia weight; and (2) a new strategic mechanism
called elitist mutation operator is introduced to enhance the diversity of the swarm and explore
new regions in the whole search space. Pseudo-code of the EMPSO algorithm is presented in
Fig 1, in which Fig 1a gives the implementation of the elitist mutation operator and Fig 1b
describes the main steps involved in the EMPSO methodology.

vnþ1
id ¼ w½wvnid þ c1r1ðpnid � xnidÞ þ c2r2ðpngd � xnidÞ� ð23Þ

As illustrated in Fig 1a, in each iteration, the elitist mutation operator is performed on a pre-
defined number (NM) of the worst fitness particles in the swarm. This process of random per-
turbation is described as follows: first, all particles are sorted in ascending order based on their
fitness function and the index numbers for the respective particles are obtained (i.e. index of
the sorted swarm is recorded in ASF[i], i = 1, . . ., pop); second, the elitist mutation is per-
formed on the front NM worst particles (selected number of least ranked particles to be elitist-
mutated) and the respective particle position vectors are replaced with the new mutated posi-
tion vectors obtained after performing variable-wise mutation on the global best position
vector (pem is the mutation probability), whereas the velocity vectors of these particles are
unvaried.

Improved GSA
Basic GSA. Based on the law of gravity and mass interactions, in 2009, Rashedi and Neza-

mabadi-pour [20] proposed a novel heuristic algorithm, namely, the gravitational search algo-
rithm (GSA). For an optimization problem, the searcher agents in GSA are a collection of
masses in which the values of the masses are proportional to their fitness functions. During the
iterative process, the masses interact with each other according to Newtonian gravity and the
laws of motion. A heavier mass has a higher attraction, which indicates greater efficiency
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(similar to the global optimum) and a slower speed of movement. The basic GSA is mathemati-
cally described as follows.

Consider a system with pop agents (masses), in which the position of the ith agent (candi-
date solution) is denoted by

Xi ¼ ðx1i ; . . . ; xdi ; . . . ; xDi Þ for i ¼ 1; . . . ; pop ð24Þ

where xdi represents the position of the ith agent in the dth dimension and D is the space
dimension. According to the Newton law of gravity, the force acting on the ith mass from the
jth mass at time t is defined as Eq (25). The total force acting on agent i in the dimension d is
considered to be a randomly weighted sum of the forces exerted from other agents, as
expressed in Eq (26)

Fd
ijðtÞ ¼ GðtÞMpiðtÞ �MajðtÞ

RijðtÞ þ ε
ðxdj ðtÞ � xdi ðtÞÞ ð25Þ

Fd
i ðtÞ ¼

X
j2Kbest;j 6¼i

randjF
d
ijðtÞ ð26Þ

whereMpi,Maj = the passive and active gravitational masses of agent i and agent j, respectively;
Mai =Mpi =Mi i = 1, . . ., pop,Mi is the inertial mass of the ith agent; G(t) = gravitational con-
stant at time t; ε = a small constant; Rij(t) = ||Xi(t), Xj(t)||2, is the Euclidian distance between
agents i and j; randj = a uniformly generated random number in [0, 1]; Kbest = the set of first K
agents with the best fitness values and the largest masses, which is a function of time t, has the
initial value K0 = pop and is linearly decreases to 1 at the end of each iteration.

Fig 1. Pseudo-code of the EMPSO algorithm.

doi:10.1371/journal.pone.0147338.g001
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Note that the gravitational constant G is a function of the initial value (G0, a problem-
dependent parameter) and time t:

GðtÞ ¼ GðG0; tÞ ¼ G0 exp �b� t
N

� �
ð27Þ

Based on the law of motion, the acceleration of the ith agent in the dth dimension at time t
is given by

adi ðtÞ ¼
Fd
i ðtÞ

MiðtÞ
ð28Þ

The next velocity of each agent i is considered to be a fraction of its current velocity added
to its acceleration and is expressed as follows:

vdi ðt þ 1Þ ¼ randi � vdi ðtÞ þ adi ðtÞ ð29Þ

xdi ðt þ 1Þ ¼ xdi ðtÞ þ vdi ðt þ 1Þ ð30Þ

The inertia mass values of the masses are calculated by

miðtÞ ¼
fitiðtÞ � worstðtÞ
bestðtÞ � worstðtÞ and MiðtÞ ¼

miðtÞXN

j¼1
mjðtÞ

ð31Þ

where fiti(t) = the fitness value of the agent i at time t; worst(t) and best(t) = the worst fitness
and the best fitness, respectively, among all agents.

Modified Velocity Updating Rule and Elite Strategy. The basic GSA may spend a signifi-
cant amount of time converging to the global optimum due to the presence of heavier masses
at the end of every run. Therefore, we propose an improved GSA (IGSA) which employs the
following two strategies to overcome this drawback. The first strategy learns from the idea of
memory and social information of PSO and defines a new velocity updating rule for agents,
which is written as Eq (32) [31]. The second strategy adds the elite strategy to GSA to accelerate
its convergence speed. The idea is to directly preserve a certain number of elite agents in the
current generation and replace an equal number of worst agents of the new generated offspring
generation. The top 5% of agents are preserved in each generation. Pseudo-code of the IGSA is
shown in Fig 2.

vdi ðt þ 1Þ ¼ randi � vdi ðtÞ þ c1r1a
d
i ðtÞ þ c2r2ðxdg ðtÞ � xdi ðtÞÞ ð32Þ

where randi, r1 and r2 = uniformly generated random numbers in [0, 1]; c1 and c2 = weighting
factors; and xdg ðtÞ = the current best solution.

Performance Test Using Benchmark Functions
Benchmark functions are commonly recognized as an important tool to validate the perfor-
mance of optimization algorithms [24, 25, 32]. There have been many kinds of benchmark
functions reported in the literature [33, 34]. However, only a comprehensive selection
of benchmark functions with various characteristics can be truly useful to test new algorithms
in an unbiased way. For this reason, a rich test suite of 9 standard minimization benchmark
functions with diverse properties in terms of separability, modality were used as experiments
for evaluating the EMPSO and IGSA. Table 1 gives a detailed description of these functions,
where D is the dimension of the function, fmin is the optimum value of the function. Func-
tions f1–f7 are high-dimensional problems. The first four functions (f1 to f4) are unimodal,
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Fig 2. Pseudo-code of the IGSA.

doi:10.1371/journal.pone.0147338.g002

Table 1. Benchmark functions.

No. Formula D Range fmim Separability Modality

f1 f1ðXÞ ¼
XD

i¼1
x2i

30 [–100, 100]D 0 Separable Unimodal

f2 f2ðXÞ ¼
XD

i¼1
jxij þ

YD

i¼1
jxij 30 [–10, 10]D 0 Non-Separable Unimodal

f3 f3ðXÞ ¼
XD

i¼1

Xi

j¼1
xj

� �2 30 [–100, 100]D 0 Non-Separable Unimodal

f4 f4ðXÞ ¼
XD�1

i¼1
100ðxiþ1 � x2i Þ2 þ ðxi � 1Þ2	 
 30 [–30, 30]D 0 Non-Separable Unimodal

f5 f5ðXÞ ¼
XD

i¼1
�xisinð

ffiffiffiffiffiffi
jxij

p
Þ 30 [–500, 500]D -418.9829×D Separable Multimodal

f6
f6ðXÞ ¼ �20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XD

i¼1
x2i

r !
� exp

1

D

XD

i¼1
cosð2pxiÞ

� �
þ 20þ e

30 [–32, 32]D 0 Non-Separable Multimodal

f7
f7ðXÞ ¼ 1

4000

XD

i¼1
x2i �

YD

i¼1
cos

xiffiffi
i

p
� �

þ 1
30 [–600, 600]D 0 Non-Separable Multimodal

f8
f8ðXÞ ¼

1

500
þ
X25

j¼1

1

j þ
X2

i¼1
ðxi � aijÞ6

0
@

1
A

�1 2 [-65.536, 65.536]D 1 Non-Separable Multimodal

f9 f9ðXÞ ¼ �
X10

i¼1
ðX � aiÞðX � aiÞT þ ci

h i�1 4 [0, 10]D -10.5 Non-Separable Multimodal

The values of aij in f8 are given in S1 Table.

The vectors ai and ci in f9 are given in S2 Table.

doi:10.1371/journal.pone.0147338.t001

EMPSO and IGSA for Estimating Muskingum Parameters

PLOS ONE | DOI:10.1371/journal.pone.0147338 January 19, 2016 9 / 20



www.manaraa.com

which are relatively easy to solve. Functions f5–f9 are multimodal so that the algorithm
really suffers from being premature. Functions f5–f7, where the number of local minima
increases exponentially with the problem dimension, appear to be the most difficult class of
optimization problems. Functions f8 and f9 are two low-dimensional functions which have
only a few local minima. We applied the EMPSO and IGSA to the above 9 benchmark func-
tions and compared the experimental results with those obtained by the standard PSO as
well as basic GSA. The results are averaged over 50 independent runs and the best-so-far
solution, mean and standard deviation of the best solution in each run are listed in Table 2.
In all cases, population size is set to 50 (pop = 50) and maximum number of iterations is
1000 (N = 1000). For PSO and EMPSO, the acceleration constants are c1 = 1.0 and c2 = 0.5.
Other parameters of the EMPSO use the following settings: constriction factor χ = 0.9, inertia
weight w = 1.0, mutation probability pem = 0.2, and the size of the elitist-mutated particles
NM = 10. For GSA and IGSA, G0 = 1.0 and β = 20.0, whereas c1 = 0.5 and c2 = 1.5 for the
IGSA.

Table 2. Minimization results of benchmark functions in Table 1.

Function Statistics PSO EMPSO GSA IGSA

f1 Best 3.03E+03 9.46E-16 8.94E-18 1.43E-18

Mean 7.45E+03 1.29E-05 1.98E-17 3.48E-18

Std. 1.99E+03 8.8E-05 5.74E-18 9.70E-19

f2 Best 2.93E+01 1.73E-02 1.32E-08 5.43E-09

Mean 8.40E+01 2.80E-01 2.30E-08 7.72E-09

Std. 6.46E+01 2.12E-01 3.60E-09 1.33E-09

f3 Best 1.95E+04 7.97 5.77E+04 1.48E+02

Mean 3.06E+04 7.13E+01 1.02E+05 2.54E+03

Std. 5.98E+03 6.01E+01 2.95E+04 1.66E+03

f4 Best 1.81E+06 1.78E+01 2.57E+01 1.45E+01

Mean 6.85E+06 6.76E+01 2.69E+01 4.96E+01

Std. 3.17E+06 6.68E+01 5.29 4.21E+01

f5 Best -9091.9 -11437.2 -4249.3 -9299.7

Mean -7273.4 -10205.5 -2907.9 -7604.1

Std. 8.23E+02 4.51E+02 4.67E+02 6.26E+02

f6 Best 1.26E+01 9.31E-01 2.43E-09 1.07E-09

Mean 1.45E+01 2.00 3.35E-09 8.45E-01

Std. 1.05 4.79E-01 4.55E-10 1.27

f7 Best 3.43E+01 3.83E-14 1.25 4.72E-02

Mean 6.86E+01 3.59E-02 4.10 1.61

Std. 1.91E+01 4.38E-02 1.62 2.08

f8 Best 0.9980 0.9980 0.9980 0.9980

Mean 0.9981 0.9980 3.4961 1.2553

Std. 1.74E-04 3.33E-16 2.25 8.58E-01

f9 Best -10.0931 -10.5364 -10.5364 -10.5364

Mean -6.6513 -5.5079 -9.3011 -10.5364

Std. 1.53 3.58 2.83 8.88E-15

Best: best-so-far solution over 50 runs.

Mean: mean of the best solutions in 50 runs.

Std.: standard deviation of the best solutions in 50 runs.

doi:10.1371/journal.pone.0147338.t002
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As can be seen from Table 2, the best results are indicated in bold font. Generally speaking,
the EMPSO provides much better results than PSO for all the 9 benchmark functions according
to the three statistics (Best, Mean and Std.). The IGSA can find better solutions than GSA for
functions f1–f7 and it strikingly improves the robustness of GSA (smaller values of Std.) on all
functions except for function f6. If comprehensively consider the values of Best and Std., the
EMPSO performs the best on 5 functions (f1, f2, f4, f6, f9) and IGSA is the best on the other 4
functions (f3, f5, f7, f8). The results in Table 2 also show that EMPSO and IGSA have better
global optimization abilities than the PSO and GSA in solving most of the 9 benchmark func-
tions and can obtain similar solutions.

Numerical Cases
In the parameter optimization problems of Muskingum models, minimization of the sum of
the squared deviations (SSQ) or the sum of the absolute deviations (SAD) between the
observed and the estimated outflows is always adopted as the objective function f, defined as
follows:

Minimize : f ¼ SSQ ¼
XT
t¼1

½Ot � ÔtðPÞ�2 ð33Þ

Minimize : f ¼ SAD ¼
XT
t¼1

jOt � ÔtðPÞj ð34Þ

where Ot = observed outflow at time t; ÔtðPÞ = estimated outflow at time t by the Muskingum
routing equation that is Eq (4) for the LMM, Eq (15) for the NLMM and Eq (16) for the
NLMM-L; P = the parameter vector need to be calibrated, where P = (C0, C1) in LMM,
P = (K, x,m) in NLMM, P = (K, x,m, α) in NLMM-L.

To evaluate the practicability of the EMPSO algorithm and the IGSA in engineering applica-
tions, we applied these two improved heuristic algorithms to seek the optimal parameter vector
P for the three different Muskingum models and compared the results with those obtained by
RGA and standard PSO, as well as the basic GSA. The optimal parameter vectors obtained in
this study are also compared with the best existing solutions reported in previous literature.
For the above five algorithms, the iterations proceed until the stopping criterion is satisfied,
which is expressed as

jfbestðnÞ � fbestðn� 1Þj � d or n � N ð35Þ

where n is the iteration number and N is the maximum number of iterations (set to 5000);
fbest(n) is the best value of f in the nth iteration and δ is convergence accuracy.

For the five algorithms in applications, the population size pop was set to 50 and they were
implemented on a PC with a 32-bit Windows 7 operating system, 4 GB RAM and 2.93 GHz-
core (TM) i3-based processor. Each algorithm was performed over 50 runs on the three Mus-
kingum models for the numerical examples. In RGA, the tournament selection, simulated
binary crossover (SBX) and polynomial mutation operators [35] are used; the crossover proba-
bility pc = 0.85 and mutation probability pm = 0.05; the distribution index for SBX is 10 and the
distribution index for the mutation operator is 100. Parameter settings of the PSO, EMPSO,
GSA and IGSA are the same with Sect. 3.
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Case 1: Application to LMM
Flood Data from the South Canal of China in August 1961. A flood occurred in the

south canal of China between the Linqing River and the Chenggou Bay in August 1961, in
which the inflow and outflow hydrographs exhibit obvious linear characteristics [36], is
employed as the numerical case for the LMM, where Δt = 12h and T = 28. The search ranges
for the two parameters in LMM are set to C0, C1 2 (0.00, 0.50). One best existing solution
according to the literature [11] is C0 = 0.4736, C1 = 0.0301 and SAD = 141.225, which is used as
a reference.

Results and Analysis. For comparison, the statistical results (Best, Worst, Mean, and Std.)
of the SAD, the model parameters, the iteration number and the CPU time for convergence
(convergence accuracy δ) by the five algorithms (RGA, PSO, GSA, EMPSO, IGSA) are listed in
Table 3: (1) with the exception of RGA, the other four algorithms find the same optimal solu-
tion (SAD = 141.194; C0 = 0.4729 and C0 = 0.0317) after 50 runs, which is better than the refer-
ence; however, only the GSA, EMPSO and IGSA can steadily converge to the same optimal
solution for the LMM in every run (values of Std. for the SADs and the parameters are 0.0000E
+00), whereas the optimal solutions obtained by the PSO are slightly fluctuate between differ-
ent runs; (2) the GSA and IGSA require more time to converge than other three algorithms; (3)
compared with GSA and IGSA, the EMPSO has a faster convergence speed (only requires 120
iterations and an average 0.0067s of CPU time for convergence in every run) and exhibits bet-
ter stability (smallest values of Std.). The estimated outflow hydrograph by the LMM using the
best parameter vector obtained in this study is shown in Fig 3. Fig 4 shows the comparison of
the average convergence rate among the five algorithms on the LMM.

Table 3. Statistics of different algorithms performed on the LMM over 50 runs for the 1961 flood from the south canal of China.

Algorithms Statistics f P Convergence (δ = 0.001)

SAD C0 C1 Iterations CPU (s)

RGA Best 141.196 0.4729 0.0316 4367 0.3852

Worst 141.301 0.4721 0.0327 4491 0.3977

Mean 141.220 0.4731 0.0312 3260 0.2894

Std. 2.1616E-02 4.8277E-04 1.0421E-03 992.01 8.6446E-02

PSO Best 141.194 0.4729 0.0317 2784 0.0668

Worst 141.208 0.4730 0.0315 1111 0.0277

Mean 141.200 0.4729 0.0316 2431 0.0586

Std. 3.1968E-03 7.0425E-05 1.4650E-04 1410.09 3.3789E-02

GSA Best 141.194 0.4729 0.0317 2147 0.5549

Worst 141.194 0.4729 0.0317 2813 0.7099

Mean 141.194 0.4729 0.0317 2519 0.6291

Std. 0.0000E+00 0.0000E+00 0.0000E+00 153.99 3.1552E-02

EMPSO Best 141.194 0.4729 0.0317 50 0.0037

Worst 141.194 0.4729 0.0317 165 0.0088

Mean 141.194 0.4729 0.0317 120 0.0067

Std. 0.0000E+00 0.0000E+00 0.0000E+00 23.54 1.1736E-03

IGSA Best 141.194 0.4729 0.0317 1175 0.3817

Worst 141.194 0.4729 0.0317 2053 0.6155

Mean 141.194 0.4729 0.0317 1754 0.5420

Std. 0.0000E+00 0.0000E+00 0.0000E+00 155.33 4.2196E-02

doi:10.1371/journal.pone.0147338.t003
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Case 2: Application to NLMM
Data Set of Wilson (1974). The data set from ref. [37], which had been demonstrated to

have a nonlinear relationship between the storage and the weighted-flow [7], is taken as the
numerical case for the NLMM. It is a single peak hydrograph that has been previously inves-
tigated by many researchers [2, 4, 7, 8, 10, 16–18, 21, 38], where Δt = 6h and T = 21. The
NLMM has three parameters and their search ranges are set to K 2 [0.01, 1.00], x 2 [0.00,
0.30]andm 2 [1.00, 3.00]. One best existing solution for the NLMM refers to Xu and Qiu
[17] using the differential evolution (DE) algorithm was K = 0.5175, x = 0.2869,m = 1.8680
and SSQ = 36.77.

Results and Analysis. The statistical results, which resemble Table 3, are also listed in
Table 4: (1) only the EMPSO and IGSA can steadily converge to the same optimal solution
(SSQ = 36.7679; K = 0.5175, x = 0.2869 andm = 1.8680) for the NLMM in every run, whereas
optimal solutions obtained by RGA, PSO and GSA fluctuate between different runs; (2) for
GSA, EMPSO and IGSA, the average number of iterations that are required for convergence in
every run are approximately 2062, 191 and 780, respectively, and the corresponding CPU con-
suming times are 0.9992s, 0.0883s and 0.4864s; these data indicate that the EMPSO has a faster
convergence speed and the IGSA obviously improves the convergence performance of GSA;
(3) the EMPSO has the best performance in optimizing the NLMM (the lowest CPU time for
every run and a steady fluctuation among of iterations with the lowest Std. = 51.22). The esti-
mated outflow hydrograph by the NLMM using the best parameter vector obtained in this

Fig 3. Fitting curve of outflow hydrograph of the LMM experiment.

doi:10.1371/journal.pone.0147338.g003
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Fig 4. Average best curves for the LMM. All results represent the means of the 50 runs.

doi:10.1371/journal.pone.0147338.g004

Table 4. Statistics of different algorithms performed on the NLMM over 50 runs for the data set of Wilson (1974).

Algorithms Statistics f P Convergence (δ = 0.0001)

SSQ K x m Iterations CPU (s)

RGA Best 36.7683 0.5184 0.2868 1.8677 3241 0.9613

Worst 37.8397 0.6369 0.2881 1.8223 4548 1.3407

Mean 36.9300 0.5266 0.2873 1.8646 1973 0.5888

Std. 2.3267E-01 3.3579E-02 1.5334E-03 1.3702E-02 1844.47 5.4068E-01

PSO Best 36.7691 0.5168 0.2871 1.8684 233 0.0536

Worst 36.8376 0.5438 0.2875 1.8569 4390 0.9927

Mean 36.7905 0.5162 0.2869 1.8687 2203 0.5007

Std. 1.5596E-02 9.3849E-03 6.8361E-04 4.0096E-03 1453.70 3.2952E-01

GSA Best 36.7694 0.5216 0.2870 1.8663 3022 1.5431

Worst 38.0759 0.5514 0.2819 1.8555 40 0.0256

Mean 37.0422 0.5492 0.2871 1.8553 2062 0.9992

Std. 3.2174E-01 3.3700E-02 1.8361E-03 1.3696E-02 1669.06 7.9225E-01

EMPSO Best 36.7679 0.5175 0.2869 1.8681 104 0.0475

Worst 36.7679 0.5175 0.2869 1.8681 321 0.1450

Mean 36.7679 0.5175 0.2869 1.8681 191 0.0883

Std. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 51.22 2.3747E-02

IGSA Best 36.7679 0.5175 0.2869 1.8681 366 0.2332

Worst 36.7679 0.5175 0.2869 1.8681 1051 0.6483

Mean 36.7679 0.5175 0.2869 1.8681 780 0.4864

Std. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 119.17 7.1140E-02

doi:10.1371/journal.pone.0147338.t004
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study is shown in Fig 5. Fig 6 shows the average convergence rate for the five different algo-
rithms on the NLMM.

Case 2: Application to NLMM-L
River Wyre Flood in October 1982. The River Wyre flood event in October 1982 [21],

which exhibits a considerable increase of flood volume (lateral flow) between the inflow sec-
tion and the outflow section (approximately 25km), is selected as the numerical case for the
NLMM-L. The flood data have multi-peaked inflow, in which Δt = 1h and T = 31, and a major
lateral flow contribution (which implies a large value of α). The search ranges for the four
parameters in the NLMM-L are set to K 2 [0.01, 6.00], x 2 [0.00, 0.30],m 2 [0.50, 3.00] and
α 2 [0.00, 3.00]. The best existing solution by the cuckoo search (CS) algorithm for the
NLMM-L according to the literature [18] is K = 5.6765, x = 0.2271,m = 0.9800, α = 2.5298
and SSQ = 53.6574.

Results and Analysis. For this numerical case to the NLMM-L, statistical results resem-
ble Table 3 are presented in Table 5. As shown in Table 5: (1) only the EMPSO and IGSA can
steadily find the global optimal solution in every run (the values of Std. for the SSQs and the
parameters are 0.0000E+00), which is same to the reference; (2) the EMPSO still has the best
performance in optimizing the NLMM-L (the lowest average CPU time for every run and a
fairly steady fluctuation among iterations with the lowest Std. = 39.82). The estimated out-
flow hydrograph by the NLMM-L using the best solution obtained in this study is shown in
Fig 7. Fig 8 shows the average convergence rate between the five different algorithms on the
NLMM-L.

Fig 5. Fitting curve of outflow hydrograph of the NLMM experiment.

doi:10.1371/journal.pone.0147338.g005
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Table 5. Statistics of different algorithms performed on the NLMM-L over 50 runs for the River Wyre flood in October 1982.

Algorithms Statistics f P Convergence (δ = 0.0001)

SSQ K x m α Iterations CPU (s)

RGA Best 53.8173 5.6300 0.2299 0.9821 2.5373 632 0.2863

Worst 66.9455 4.1086 0.2332 1.0470 2.5230 5000 2.0693

Mean 58.1929 4.8087 0.2310 1.0150 2.5253 4374 1.8169

Std. 3.5486E+00 3.6741E-01 1.9815E-03 1.6023E-02 2.6082E-03 1285.31 5.2463E-01

PSO Best 53.7213 5.7644 0.2258 0.9770 2.5319 3195 1.0745

Worst 56.0369 5.2233 0.2172 0.9960 2.5309 4903 1.6501

Mean 54.3777 5.6507 0.2277 0.9810 2.5307 2907 0.9797

Std. 4.9223E-01 2.1336E-01 4.6838E-03 7.7166E-03 4.7672E-03 1411.27 4.7516E-01

GSA Best 67.9146 4.0779 0.2294 1.0474 2.5204 145 0.1187

Worst 156.8379 2.2746 0.2342 1.1702 2.5148 4203 2.6463

Mean 101.8833 3.0891 0.2345 1.1070 2.5183 4178 2.6176

Std. 1.4658E+01 3.1027E-01 7.9331E-04 2.0579E-02 1.2428E-03 601.50 3.6447E-01

EMPSO Best 53.6574 5.6765 0.2271 0.9800 2.5298 131 0.0886

Worst 53.6574 5.6765 0.2271 0.9800 2.5298 298 0.2010

Mean 53.6574 5.6765 0.2271 0.9800 2.5298 196 0.1330

Std. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 39.82 2.6695E-02

IGSA Best 53.6574 5.6765 0.2271 0.9800 2.5298 277 0.2386

Worst 53.6574 5.6765 0.2271 0.9800 2.5298 780 0.6520

Mean 53.6574 5.6765 0.2271 0.9800 2.5298 618 0.5201

Std. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 97.18 7.9210E-02

doi:10.1371/journal.pone.0147338.t005

Fig 6. Average best curves for the NLMM.

doi:10.1371/journal.pone.0147338.g006
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Fig 7. Fitting curve of outflow hydrograph of the NLMM-L experiment.

doi:10.1371/journal.pone.0147338.g007

Fig 8. Average best curves for the NLMM-L.

doi:10.1371/journal.pone.0147338.g008
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Conclusions
In this study, the EMPSO algorithm and the IGSA were applied for solving the parameter esti-
mation problems of three forms of linear or nonlinear Muskingum models (LMM, NLMM and
NLMM-L). The LMM has two parameters and the NLMM has three, whereas the NLMM-L
considers the lateral flow along the river reach, which has a more complex structure with four
parameters. The EMPSO and IGSA were tested on a rich set of 9 standard minimization bench-
mark functions. Then three typical flood events used in previous literature were selected as
numerical cases (Case 1–3) to evaluate the practicability of the EMPSO and IGSA in applica-
tions. The results by the EMPSO and IGSA were compared with those obtained by the RGA,
PSO and GSA, as well as the best reported solutions in the literature. Several conclusions are
summarized as follows.

1. only the EMPSO and IGSA can steadily converge to the same optimal solution for the three
Muskingum models in every run compared with RGA, standard PSO and the basic GSA;

2. the GSA may require more iterations and CPU time than the IGSA to find the same opti-
mal solution for the LMM, and the results obtained by the GSA for the NLMM and the
NLMM-L are the worst among the five algorithms (the largest values of SSQ and Std. in
Tables 4 and 5), which indicates that the proposed IGSA can improve the performance
(including the search efficiency, convergence speed and the stability) of GSA in optimizing
the NLMM and the NLMM-L;

3. the EMPSO has the fastest convergence rate and the best robustness than the other four
algorithms for the three Muskingum models in term of specified convergence accuracy and
the Std. values.
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